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1 Introduction and summary

The Abelian Higgs model in four-dimensional anti-de Sitter space (AdS4) is specified by

the action

S =
1

2κ2

∫

d4x
√−g

[

R− 1

4
F 2
µν − |(∂µ − iqAµ)ψ|2 − V (|ψ|)

]

, (1.1)

where V depends only on the magnitude of the complex scalar field ψ, not its phase.

Among the simplest solutions to the classical equations following from the action (1.1) is

the AdS4-Reissner-Nordstrom black hole solution, hereafter RNAdS:

ds2 = e2A
(

−hdt2 + (dx1)2 + (dx2)2
)

+
dr2

h

A =
r

L
h = 1 − ǫLκ2e−3r/L +

ρ2κ4

4
e−4r/L

Φ = ρκ2
(

e−rH/L − e−r/L
)

ψ = 0 . (1.2)

In [1], following earlier work [2], it was suggested that there are black hole solutions to

the classical equations of motion following from (1.1) which spontaneously break the U(1)

gauge symmetry associated with phase rotations of ψ. The symmetry-breaking solutions

can be thought of as superconducting black holes. More precisely, there is a supercon-

ducting condensate of the scalar field ψ which floats above the horizon. A calculation of

the critical temperature Tc below which black hole superconductivity occurs was outlined

in [2] and carried through for a few choices of parameters such as q and the anti-de Sitter

space radius L. The conformal field theory (CFT) dual to a superconducting black hole of

this type is a symmetry-breaking phase whose order parameter is 〈Oψ〉, where Oψ is the

operator dual to ψ. In the simplest setup, the phase rotations of Oψ are a global symmetry

of the boundary theory; however, one can weakly gauge this U(1) symmetry, and then

the symmetry-breaking in the boundary theory can also be described as superconductivity.
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This transition from breaking a global symmetry to breaking a gauge symmetry has a pre-

cise parallel in BCS theory: all the dynamics of electrons and phonons can be carried out in

ignorance of the gauge interactions; but once the condensate Cooper pairs are formed, one

can go back and note that it breaks the abelian gauge symmetry. As has been emphasized

in [3], many — though not all — of the macroscopic features of superconductors can be

understood as a consequence of an effective field theory treatment of the breaking of the

abelian gauge symmetry.

In [4], the picture of superconducting black holes was fleshed out in the limit of large

q, where the matter fields do not back-react on the geometry. It was further shown in [4]

that for the choice

V = − 6

L2
+m2|ψ|2 , (1.3)

with m2L2 = −2, the conductivity defined from a two-point function of the conserved

current dual to Aµ exhibits gap-like behavior. This feature, remarkable for its qualitative

(and perhaps semi-quantitative) similarity to real-world superconductors, cannot be antic-

ipated on general grounds of symmetry-breaking and effective field theory. However, as

observed in [4], the large-q limit doesn’t commute with the small-temperature limit. So an

outstanding question is what the ground state of the system is.

In [5], a ground state was proposed for the choice

V = − 6

L2
+m2|ψ|2 +

u

2
|ψ|4 , (1.4)

with m2 < 0 and u > 0. On the gravity side, this ground state has the structure of a

domain wall. On the ultraviolet side is AdS4 with ψ = 0. On the infrared side is AdS4

with |ψ| =
√

−m2/u. In between is a charged condensate of ψ. Asymptotically far into

the infrared, there is no electric field. In terms of the dual field theory, this means that

all the charge is carried by the condensate: none remains in the normal state. This is

a satisfying picture, but there are some strange features. The infrared AdS4 signals the

emergence of relativistic conformal symmetry, SO(3, 2), in the infrared. One consequence

of this symmetry is that there is a maximum speed of propagation for signals at far infrared

energies, and this speed is less than the speed of light. In other words, the geometry has

a non-trivial index of refraction for infrared signals. A second consequence is that the

real part of the conductivity exhibits power-law decay for small ω: Re σ ∝ ωδ with an

exponent δ that varies continuously as a function of q, m2, u, and L. Power-law decay at

small frequency means that there is no gap. It was suggested in [5] that for a more general

class of potentials, a similar domain wall structure would arise, but the infrared side would

not be anti-de Sitter. Instead it would be a warped geometry whose isometry group is

the Lorentz group SO(2, 1) (together with translation invariance in space and time). This

would again imply a non-trivial index of refraction, but the conductivity would not be

forced to exhibit power-law scaling at small ω: it might instead exhibit gapped behavior.

The aim of the current paper is to go beyond the linearized calculations of [1] and

the probe approximation of [4] and track the thermodynamically preferred phase of the

Abelian Higgs model, from Tc down to low temperatures. This task proceeds largely by
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finding numerical solutions to the equations of motion, of the form

ds2 = e2A(r)
[

−h(r)dt2 + (dx1)2 + (dx2)2
]

+
dr2

h(r)

Φ = Φ(r)

ψ = ψ(r) , (1.5)

where Φ = A0 is the timelike component of the gauge potential. We always insist that

h(r) should have a simple zero at a finite value of r: that is, there is always a regular,

finite-temperature horizon in our solutions. In order for Aµdx
µ = Φdt to be well-defined

at the horizon, we must have Φ = 0 at the horizon. We also insist that ψ ∝ e−∆ψA near

the boundary of AdS4, where ∆ψ is the larger root of

∆ψ(∆ψ − 3) = m2L2 . (1.6)

This condition is equivalent to specifying that the lagrangian of the dual field theory isn’t

deformed by Oψ.1

We have two main findings:

1. Superconducting black holes of the form (1.5) are thermodynamically preferred over

RNAdS black holes below a temperature Tc at which a second order phase transition

occurs. This was speculated to be the case in [1] and asserted to be true in the probe

approximation in [4]; also there was a claim in [7] of unpublished calculations verify-

ing that superconducting black holes are favored. More recently, the phase transition

was studied in the probe approximation in the more general setting of non-zero su-

perfluid velocity, and a tricritical point was found [8, 9]. While this paper was nearing

completion, we received [10], which has some results overlapping ours on thermody-

namics away from the probe approximation. The results reported here together with

the literature just cited present quite a convincing case that superconducting black

holes describe the preferred phase below the temperature Tc obtained from analyzing

linear perturbations around RNAdS.

2. At least for large enough values of qL, an SO(2, 1) symmetry and a non-trivial index

of refraction arise at sufficiently small temperatures. This is associated with charge

being completely expelled from the black hole, or in field theory terms, to charge

being completely carried by the condensate. As qL decreases, the index of refraction

decreases. For sufficiently small qL, it is difficult to say whether SO(2, 1) symmetry

arises in the limit of small temperatures. If it does, the relevant temperature scale is

very small indeed.

We have been unable to construct symmetry-breaking solutions at zero temperature. Such

solutions would be dual to the ground state of the conformal field theory in the presence of

1For a range of dimensions, 3/2 < ∆ψ < 5/2, it is consistent to choose instead the smaller root of (1.6).

This choice corresponds to a different CFT, whose correlators can be systematically related to the original

CFT [6]. A discussion of superconducting black holes with these alternative boundary conditions has been

given, in the probe approximation, in [4].
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a finite charge density. It is reasonable to expect that such solutions exist, and that they

exhibit an emergent Lorentz symmetry in the infrared, at least when qL is not too small.

The rest of this paper is organized as follows. In section 2 we collect analytical results

on the equations that determine the background as well as equations that can be solved to

find the conductivity. In section 3 we report on the result of our numerical studies of these

equations, focusing on thermodynamics, a finite index of refraction, and the conductivity.

2 Analytical results

Plugging the ansatz (1.5) into the equations of motion resulting from (1.1), one finds the

following second order differential equations:

A′′ = −1

2
ψ′2 − q2

2h2e2A
Φ2ψ2 (2.1)

h′′ + 3A′h′ = e−2AΦ′2 +
2q2

he2A
Φ2ψ2 (2.2)

Φ′′ +A′Φ′ =
2q2

h
Φψ2 (2.3)

ψ′′ +

(

3A′ +
h′

h

)

ψ′ =
1

h

∂V

∂ψ∗ − q2

h2e2A
Φ2ψ , (2.4)

where primes denote d/dr. There is also a first order constraint, which if satisfied at

one value of r must hold everywhere, provided the equations of motion (2.1)–(2.4) are

also satisfied:

h2ψ′2 + e−2Aq2Φ2ψ2 − 1

2
he−2AΦ′2 − 2hh′A′ − 6h2A′2 − hV (ψ) = 0 . (2.5)

We assume that ψ is everywhere real. This makes sense because it costs energy for its

phase to vary, and with variation of fields only in the r directions, there is no non-trivial

topology for its phase to wind around.

Precisely the equations (2.1)–(2.5) were derived in [5]. But unlike in that paper, here

we require that h has a simple zero at a finite value of r. Using the freedom to shift r by an

additive constant, we may require that the horizon occurs at r = 0. Using also the freedom

to rescale t and ~x = (x1, x2) by separate multiplicative factors, we may also require

A(0) = 0 and h′(0) = 1 . (2.6)

In order to specify a solution to the equations of motion with a regular horizon, we need

only two further conditions:

ψ(0) = ψ0 and Φ′(0) = Φ1 . (2.7)

A standard parameter-counting argument suffices to show that there is now a well-defined

Cauchy problem. Here is how the argument goes. The four second order equations have

eight integration constants, but one is used up by the constraint (2.5), one more is used

up by insisting that the horizon is at r = 0, and four more are used up by the explicit

– 4 –



J
H
E
P
0
4
(
2
0
0
9
)
0
0
8

conditions (2.6)–(2.7). This appears to leave two constants undetermined. But in fact,

the existence of a regular horizon implicitly requires that Φ = 0 at the horizon and that

ψ is regular there, and these two conditions amount to fixing the final two integration

constants. So, based on an analysis of the horizon boundary conditions, there is a two-

parameter family of solutions, parameterized by ψ0 and Φ1.

There is one additional boundary condition at infinity: as we have already mentioned,

we require that ψ ∝ e−∆ψA near the boundary of AdS4. This requirement amounts to a

non-linear constraint on (Φ1, ψ0). Any pair of values that satisfies the constraint corre-

sponds to a black hole that spontaneously breaks the abelian gauge symmetry: that is, a

superconducting black hole. In practice, one must make some further restrictions on the

allowed class of solutions: for large r, A must asymptote to a linear function of r with pos-

itive slope, while h and Φ must asymptote to constants. There are solutions which violate

one or more of these restrictions: for example, A→ −∞ as h→ +∞ is fairly common. We

believe all such solutions are singular. Certainly they are not asymptotically AdS4, and as

such they can naturally be excluded. By studying series expansions near the boundary of

solutions that are asymptotically AdS4, one can show that

A(r) = a1r + a0 + . . .

h(r) = H0 +H3e
−3A + . . .

Φ(r) = p0 + p1e
−A + . . .

ψ(r) = Ψ0e
−∆ψA + . . . , (2.8)

where in each equation, . . . indicates terms which are subleading at large r to the ones

shown. Because r = 0 is by assumption the horizon, i.e. the largest value of r where h has

a zero, we must have H0 > 0; also, as remarked previously, we require a1 > 0; but all the

other constants in (2.8) might in principle have either sign. In practice, we generally find

p0 > 0 and p1 < 0.

We make one further restriction on the solutions we study below: ψ(r) is not allowed

to have any nodes. This is based on the idea that oscillations in ψ can only add to the

energy, and there is no topology to support them, so a solution with nodes is probably

unstable toward decay to a solution with no nodes. Such expectations have been borne

out in related studies of solutions of the Einstein-Yang-Mills equations: for a recent review

see [11].

Having found a solution to (2.1)–(2.5), one can determine its thermodynamics by

extracting the coefficients shown in (2.8). The energy density, entropy density, temperature,

chemical potential, and charge density can be read off as

ǫ = − H3

κ2LH0
s =

2π

κ2
e2A(0)

µ =
p0

2L
√
H0

T =
1

4π
eA(0)h

′(0)√
H0

ρ = − p1

κ2
√
H0

f = ǫ− Ts .

(2.9)
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We adhere to conventions of [7], which discusses the thermodynamics of a model similar

to the Abelian Higgs in AdS4. Energy density, temperature, and chemical potential are

measured with respect to the Killing time
√
H0t instead of t. We also follow [7] in defining

rescaled thermodynamic quantities with no κ dependence, as follows:

ǫ̂ =
κ2ǫ

(2π)3L2
ŝ =

κ2s

(2π)3L2

ρ̂ =
κ2ρ

(2π)3L2
f̂ =

κ2f

(2π)3L2
.

(2.10)

The states in the dual conformal field theory that charged black holes describe are charac-

terized by two energy scales, which we can choose to be
√
ρ̂ and T . The dimensionless ratio

T/
√
ρ̂ parameterizes a family of symmetry-breaking black hole solutions in the Φ1-ψ0 plane.

Let us consider ρ̂ to be fixed. At some critical temperature, T = Tc, the family of solutions

intersects the flat line at ψ0 = 0 that corresponds to RNAdS. It is sometimes convenient

to use T/Tc instead of T/
√
ρ̂ to parameterize the broken solutions. In doing so, we should

note that we hold ρ̂ fixed: that is, what T/Tc really means is (T/
√
ρ̂)/(Tc/

√
ρ̂c). This is

distinct from what we would get by holding the chemical potential µ fixed. Physically, we

are studying the boundary theory at fixed charge density.

Following [4, 5], we will also explore the conductivity for a selection of the solutions

we generate. Because the condensate is purely s-wave, the conductivity is the same in any

direction: it is a complex scalar, σ, whose real part measures the dissipative response and

whose imaginary part measures the reactive response. One may calculate the conductivity

using the formula σ(ω) = J(ω)/E(ω), where J is the current response to a spatially

homogeneous electric field E. More precisely, if we introduce a perturbed gauge field,

Aµdx
µ = Φdt+ e−iω

√
H0tax(r)dx , (2.11)

and also perturb the metric by introducing an off-diagonal element

gtx = e−iω
√
H0te2A(r)htx(r) , (2.12)

then the linearized equations of motion couple ax and htx but do not require any additional

fields to be perturbed. Allowing complex perturbations to the gauge field and the metric

is a formal trick: it is understood that we take the real part at the end of the day. The

linearized Einstein equations reduce to a single constraint between htx and ax:

h′tx + e−2AΦ′ax = 0 . (2.13)

This constraint can be used to eliminate htx from the linearized Maxwell equations. The

resulting equation for Ax is

a′′x +

(

A′ +
h′

h

)

a′x +
1

h

(

ω2H0

he2A
− 2q2ψ2 − Φ′2

e2A

)

ax = 0 . (2.14)

Essentially this equation also appeared in [5]. The perturbation ax must obey standard

horizon boundary conditions: it is infalling. With the requirements (2.6), this simply means

– 6 –
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that ax ∝ r−iω
√
H0 for small r. At large r, a series solution in powers of e−r suffices to

show that

ax(r) = a(0)
x + a(1)

x e−A(r) + . . . . (2.15)

The conductivity is

σ = − i

ω

a
(1)
x

a
(0)
x

, (2.16)

simply because a
(1)
x e−iω

√
H0t is the expectation value of the current Jx in the dual field

theory, while iωa
(0)
x e−iω

√
H0t is the electric field.

Before delving into the results of numerically solving (2.1)–(2.5), let us note an argu-

ment [2] in favor of the existence of symmetry-breaking black holes, for sufficiently large

qL, that avoids numerics entirely and employs instead the Breitenlohner-Freedman (BF)

bound [12, 13].2 The starting point is to note that the T → 0 limit of the Reissner-

Nordstrom black hole (1.2) has for its near-horizon geometry AdS2 ×R2. Let’s choose the

radial variable r in (1.2) so that the horizon is at rH = 0. Then at extremality one has

ǫ̂ =
4

(2π)3L3
ρ̂ =

√
12

(2π)3L2
, (2.17)

where ǫ̂ and ρ̂ are defined as in (2.10). One easily sees that the radius of the AdS2 geometry

near r = 0 is

LIR =
L√
6
. (2.18)

The transverse space is not significant for what follows (in the context of [2] it was S2

not R2). The point is to note that the BF bound points to an instability in AdS2 when a

scalar has a effective mass m2
IR satisfying

m2
IRL

2
IR < −1

4
. (2.19)

Here m2
IR is the limit as r → rH of the effective mass squared defined in [1]:

m2
eff = m2 + gttq2Φ2 . (2.20)

When the inequality (2.19) holds, according to the logic of [2], one should expect not just

a few branches of symmetry-breaking solutions, but infinitely many, with arbitrarily many

nodes in ψ. If the inequality does not hold, it is not clear whether or not superconduct-

ing solutions exist: the question then depends on more detailed properties of the matter

lagrangian. But at most one expects only finitely many branches of symmetry-breaking

solutions. As usual, the branches with nodes can generally be expected to be unstable

and/or thermodynamically disfavored.

A short calculation based on (1.2) and (2.20) shows that (2.19) is equivalent to

m2L2 − 2q2L2 < −3

2
. (2.21)

2We note that a related line of argument has been refined and extended in [10] to the case of neutral

scalars with m2L2 = −2.
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For comparison, the BF bound in AdS4 is m2L2 ≥ −9/4. If m2L2 < −9/4, then empty

AdS4 itself is unstable toward developing non-zero ψ. If −9/4 < m2L2 < −3/2, then

AdS4 is stable, but the argument explained in the previous paragraph indicates that there

should be symmetry-breaking charged black hole solutions no matter what value q takes. If

m2L2 > −3/2, then only for sufficiently large q does this argument imply the existence of

symmetry-breaking charged black hole solutions. Our numerics will focus on m2L2 = −2

and qL between 0.1 and 2.3

3 Numerical results

As explained following (2.7), the black hole solutions we are interested in can be parame-

terized by ψ0 (the value of the scalar field at the horizon) and Φ1 (roughly, the electric field

in the r direction at the horizon). The boundary condition on the scalar at the conformal

boundary of anti-de Sitter space amounts to a single non-linear constraint between ψ0 and

Φ1. There is thus a one-parameter family of solutions. More precisely, there are several

such families, or perhaps even infinitely many, with each family corresponding to black hole

solutions where ψ has zero, one, two, or more nodes. As explained following (2.8), we focus

our attention on the family of solutions where ψ is everywhere positive. To explore this

family of solutions, we started by finding a few symmetry-breaking solutions with small ψ0.

These solutions sufficed to determine Tc with good accuracy. (Tc can also be determined

by treating the scalar as a linearized perturbation of the Reissner-Nordstrom-anti-de Sitter

solution, as in [1].) Then we proceeded to larger ψ0 in small steps, ensuring at each step

that the boundary condition on the scalar is satisfied. We iterated this process until we ran

out of CPU time (the allocation was roughly 12 hours per branch) or until we encountered

numerical errors suggesting that the solutions were no longer reliable.

We further restrict our attention to the scalar potential (1.3) with m2L2 = −2. As

explained around (1.6), this corresponds to an operator Oψ in the dual field theory with

dimension 2, provided one makes the usual assignment of operator dimensions. There are

three dimensionful parameters in the lagrangian: κ, L, and q. But κ enters only as an over-

all scale which doesn’t affect the classical equations of motion or rescaled thermodynamic

quantities. Only the dimensionless combination qL can enter into formulas describing the

physics of the dual CFT, heuristically because conformal invariance prohibits any dimen-

sionful scale in the theory.

3.1 Thermodynamics

Figure 1 shows a summary of thermodynamic quantities as a function of qL and the temper-

ature. Of particular interest is ∆f̂ , which is the rescaled free energy of the superconducting

black hole, minus the rescaled free energy of the Reissner-Nordstrom black hole with the

same temperature and charge density. The criterion for superconducting black holes to be

preferred in the microcanonical ensemble is ∆f̂ < 0. As is evident from figure 1D, ∆f̂ is

indeed negative for T < Tc, no matter what qL is, over the range 0.1 < qL < 2. It appears

3We thank S. Hartnoll for correcting a numerical error in a previous version of this discussion.
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Figure 1. (Color online) Thermodynamic quantities as functions of qL and temperature. In (A)-

(D), the curves for each value of qL have different lengths because they terminate either where

numerical errors began to cast doubt on the validity of the coldest solutions, or where we simply

ran out of CPU time. All logarithms are natural logs.

that there are thermodynamically preferred superconducting black holes for all values of

qL when the potential is (1.3) with m2L2 = −2. This agrees with our BF bound argument

from section 2. If we chose m2L2 less negative, or positive, then we would expect there

to be a minimum value of qL below which superconducting black holes either do not exist

or are not thermodynamically favored. But, according to the arguments of [1], we expect

that sufficiently large qL should produce superconducting black holes for any fixed value

of m2L2.

3.2 Index of refraction

At least for qL >∼ 0.7, a distinctive feature emerges at low temperatures: h has a “double-

shelf” structure, visible in figures 2C and 2D. If the lower shelf extended infinitely far

into the infrared, instead of terminating in a regular horizon, then we would wind up

with a domain wall geometry similar to the one exhibited explicitly in [5]. In such a case,
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Figure 2. (Color online) (A) The inverse index of refraction, 1/nIR, as a function of qL. (B) The

critical temperature Tc and the inflection point temperature T∗ compared to the rescaled charge

density ρ̂ as functions of qL. (C) For qL = 0.7 and the coldest temperature we could reach, there is

an inflection point in h(r) at the location of the black dot. In order to see a distinctive double shelf

develop around this inflection point, we had to cool the black hole quite a bit more than we did for

figure 1. (D) For qL = 1.4, there is a distinctive double-shelf structure in h(r) at a less extreme

temperature than for qL = 0.7. The black dot is again at an inflection point of h(r).

the infrared geometry would not be anti-de Sitter space, but rather some more general

warped geometry with SO(2, 1) invariance. The overall geometry would then be a domain

wall with no boost invariance separating two asymptotic geometries, both of which have

SO(2, 1) invariance, but with different values of h, call them hUV and hIR. The overall

normalization of h can be changed by reparameterizing r, but the ratio

nIR ≡
√

hUV

hIR

(3.1)

is an invariant quantity. It can be termed an index of refraction, because it characterizes

the maximum speed of transmission of signals in the infrared. Unlike in [5], we have been

unable to explicitly construct zero-temperature solutions with an infinite shelf. However,

examination of a series of solutions with the same qL and decreasing values of T/Tc shows

that the lower shelf broadens out without changing its height appreciably. Because the

existence of a shelf is a somewhat qualitative criterion, we studied instead the inflection

points of h as a function of r. There are never more than two. If there are two, then the

one at the smallest value of r is probably associated with double shelf behavior. We define

nIR for a finite-temperature solution by replacing hIR by h evaluated at its first inflection
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Figure 3. (Color online) (A), (B) The real and imaginary parts of the conductivity for qL = 0.7

at various values of T/Tc. (C), (D) The real and imaginary parts of the conductivity for qL = 1.4

at various values of T/Tc. (E), (F) The real and imaginary parts of the conductivity for qL = 2 at

various values of T/Tc.

point. In figure 2A, we show 1/nIR for the coldest black hole we could construct as a

function of qL. For qL <∼ 0.7, we couldn’t find solutions where there are two inflection

points. For larger values, we observe that there is a temperature T∗ below which there are

two inflection points, and above which there are not. We are not sure whether the double

shelf appears at all values of qL or not. If it does, T∗ quickly becomes small, and nIR

quickly becomes large, as qL decreases. Indeed, we found nIR ≈ 4.8 × 105 at qL = 0.7.
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3.3 Conductivity

For a selection of superconducting black holes, we computed the conductivity as a func-

tion of frequency by solving (2.14) with infalling boundary conditions at the horizon and

using (2.16). Figure 3 shows the real and imaginary parts of the conductivity at various

temperatures for qL = 0.7, 1.4, and 2.

The results are roughly in line with the earlier results [4] in the probe approximation;

also, they appear to approximately agree with the results of [10], though the range of qL

we surveyed is further from the probe approximation.

Several qualitative points are worth noting:

• The behavior Imσ ∝ 1/ω indicates the presence of a δ(ω) contribution to Reσ.

• When qL = 0.7, the conductivity curves appear to lie on top of each other. One way

to understand this is that Tc is very small compared to
√
ρ̂ for qL = 0.7, and making

T even smaller doesn’t significantly change the way the system responds.

• The behavior of σ at small ω/
√
ρ̂ is more “gap-like” for larger values of qL: that is,

σ is closer to 0 for a wider interval. But we do not find evidence for σ being strictly

zero up to some finite ω. It could be that this happens for T exactly equal to 0; but

we are inclined to think that there isn’t a “true gap” in these systems.

It is notable that a finite δ(ω) appears in Reσ even as T approaches Tc—in fact, even above

Tc it persists. As noted in [10], this is associated with the translation invariance of the

system, which prevents a DC current from relaxing. Thus, infinite DC conductivity is not

a feature that distinguishes the superconducting black holes from the normal state RNAdS

black holes; rather, the breaking of the abelian gauge symmetry through the formation of

the condensate is the distinguishing feature.
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